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Abstract

Topological quantum computing offers an excellent method to create fault-tolerant, quantum
computers while using fewer qubits than other fault-tolerant methods.  In this paper I will discuss the
most popular form, the use of nonabelian anyons, which occur in 2D systems.  In particular I will
discuss Fibonacci Anyons and braids that simulate quantum gates to arbitrary accuracy.

Introduction

Topological invariants present a potentially
effective way to prevent error in quantum
computing.  Topological invariants are those
attributes of a system, which remain unchanged by
small, local changes.   This is exactly what is
needed to perform fault-tolerant quantum
computations.   What still remains to be
determined is what topological invariants can be
used.  There are ideas on how to use topology to
prevent computation errors for trapped-ions,
superconducting qubits.  There are also techniques
using superfluids (px + ipy) combined with flying
qubits and finally using braided anyons.   Anyons
have been shown to occur in certain types of 2D
superfluids and are believed to occur also in
fractional quantum Hall systems1.  In this paper I
will present an introduction to braid theory,
anyons, and how the combination of these two
theories may be used to perform quantum
computations.  It has been shown that for some
anyon models topological quantum computing is
capable of completing quantum computation with
the same power as other forms of quantum
computers, an important result2.  Except where
noted, all the references for the next four sections
are from Professor John Preskill’s lecture notes2.

Braid Theory

Knots, links and braids have been of
interest to humans since at least the time of
Alexander the Great in the 4th century BCE.
Knots became of interest to physicists when
Lord Kelvin purposed the idea that atoms
where each distinct knots 3.   Following this
there was a large effort made by mathematicians
and physicists to determine the fundamental
knots.  A representation of a knot was defined

to be a closed polygonal curve in space.  Links
are then a combination of knots that are
intertwined.  It was not until later (1920s) that
mathematicians became interested in
representations of braids which were defined to
be a set of n polygonal curves stretching from z
= 0 plane (in R3) to the z = 1 plane where the
kth curve stretches from (1/2, k/n, 0) to (1/2,
k/n, 1) and the z value is strictly increasing and
the curves do not intersect3.

Braids clearly have some algebraic
properties.  There is a clear identity braid, which
is just formed by connecting the start and end
points with straight lines. We can imagine
“adding” two braids with the same number of
strands. This addition will be associative” a(bc)
= (ab)c.  Similarly, we could imagine by exactly
reversing the way we did the braiding, that we
could add two braids which could be
manipulated to obtain the identity (an inverse
braid).  Finally, if we add many braids together it
is clear it will still remain a braid.  So we now
have a group.

Let us now think about how we would
generate this group and what equalities we
require of combinations of those generators so
that we can determine if two braids are
equivalent.  Let us define σk  to be the exchange
of the kth curve with (k+1)st curve where the kth

curve passes over the (k+1)
st (see Figure 1).

We then get the following set of identities:

σi σj = σj σI for |i – j|< 3       (1)

σi σi+1σi = σi+1 σi σi+1 .          (2)
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σ2                    σ1

σ1                   σ2

The first of these equations is relatively
obvious - two disjoint exchanges are
commutative and the second can be seen in
Figure 1. What is rather surprising is that these
conditions are all which are required to define
our braid group.  We will use the second of
these equalities (Eq. 2) later to talk about abelian
anyons.

Figure 1.  If you look closely you can see the two
braids can be continuously deformed into each
other without cutting any of the strands.  This
demonstrates the equality in Equation 2.

Anyons

Anyons are quasiparticles that occur in 2D
systems.  Unlike 1 and 3 dimensional systems,
particles do not necessarily fall into the
categories of fermions or bosons.  This is a
result of the topology of SO(2), the set of
rotations in 2 space 2.  Anyons are able to carry
charges that are fractions of the fundamental
charge of the electron.   The spin of these
quasiparticles can take on any real value.   This
is of course related to their statistics and the fact
that they are neither fermions nor bosons.

While anyons appear very different from
bosons and fermions they do have some very
important similarities.  There are no physical
processes that can create or destroy isolated
anyons.  This is important if we intend to use
them in a quantum computer.  If the anyons
could spontaneously appear or disappear any
quantum operation using them would fail.  They
also have antiparticles, which they can interact
with to combine or annihilate.  Anyons can also
combine with other anyons that are not their
antiparticle, which will be useful later.

Anyons come in two types, abelian and
nonabelian.  By braiding two anyons, they
acquire up a topological phase similar to that
found in the Aharonov-Bohm effect – that is
the phase given to a charged particle
accumulates when it travels around a solenoid.
Just like the phase obtained in Aharonov-Bohm
effect, the phase only depends on how many
times the anyons wrap around each other and
not the path they follow.  In the one-
dimensional representation of the braid group,

we obtain σj = ei θj for identical anyons.  From
Equation 2, we then get

ei θj
 = ei θj+1 = ei θ       (3)

where θj is the topological phase added by the

σj operation and i is the imaginary number. So
all exchanges of identical anyons have the same
phase.  Note if we let θ = 0 we get bosons and
if θ = π we get fermions.  We see that in this
one-dimensional representation of the braid
group the exchanges are commutative so anyons
that follow this form are called abelian anyons.
Alternatively, we could have a multidimensional
representation, which allow us to have
nonabelian anyons (sometimes called
nonabelions) as well.  These nonabelian anyons
are more useful for quantum computing than
abelian anyons.

We now must consider how anyons can
combine and split.  Each model of anyons will
have different fusion rules.  The fusion rules
determine the total charge, c, when a and b
combine.  These are written as

a x b = ∑cN
c
ab                  (3).

where Nc
ab is a nonnegative integer and the sum

is over the complete set of labels of the
composite.  The composition rules are
symmetric (a x b = b x a) so the possible
charges do not depend on which side the anyon
came from.  Note that if Nc

ab is zero the charge,
c, cannot be formed, while if it is one there is a
unique way of obtaining c, and Nc

ab can also be
greater than one.  So Nc

ab represents the
number of distinguishable ways that a charge c



can be obtained.  The distinguishable ways that
a and b can be combined to form c then
represents an orthonormal basis for a Hilbert
space Vc

ab.  Vc
ab is then called a fusion space

and we denote the basis elements as

{|ab; c, µ>,   µ = 1,2,…, Nc
ab}.

There are isomorphisms between different
spaces, which will not be discussed here since
we will only be considering a specific case (the
simplest one) and the formalism would get in
the way.  The next idea that is introduced is the
R matrix, which is the braid operator, and the F
matrix, which is the fusion operator. These are
each specific to a given model.  The last result
of the formalism of anyons that should be noted
is that the Hilbert space can be shown to be
exponential in size making it a good space to do
quantum computations.

The final important aspect we want our
system to have is a mass gap.  This means that
the anyons are not massless.  Because they are
not massless, it takes more energy to create a
pair of anyons (this is of course not the case
with massless particles) so that if we cool the
system down sufficiently there will be a low
probability of anyons spontaneously forming
and then wrapping around the anyons we are
using for computation, which would effectively
form an undesired gate or simply causing
decoherence.

Fibonacci Anyons

   Before talking about creating a quantum
circuit using Fibonacci anyons a brief
introduction is required.  The Fibonacci model
of anyons is the simplest nonabelian model.  It
also goes by the name “Yang-Lee model”, but
Fibonacci is more natural.  The only nontrivial
fusion rule is 1 x 1 = 0 + 1 where 1 is the trivial
label (no anyon) and the only nontrivial label is
1 which is its own antiparticle.  The statement
then means that two anyons can either
annihilate or fuse into a single anyon.  This
model is nonabelian because the two anyons can
fuse in distinguishable ways.  The name comes
from the fact that the dimension of the Hilbert
space of n anyons is the (n+1)st Fibonacci
number (1, 1, 2, 3, 5, 8…).  The total charge of a

collection of Fibonacci anyons (fusing them all
together) is either 0 or 1. This charge is also
called “q-deformed” spin quantum number (q-
spin)4.  Fibonacci anyons are believed to exist in
experimentally observed quantum Hall states as
well as in rotating Bose condensates and
quantum spin systems 4.

Quantum Computations with Fibonacci Anyons

Let us now consider how we might braid a
quantum gate.  We first must start by defining
our qubits.  Looking at the Fibonacci numbers
we see that the fusion space for two anyons is 2
dimensional with the basis |(•,•)0> and |(•,•)1>
where the 0 and 1 represent the total q-spin.
After we add a third anyon the 3 dimensional
space is spanned by |((•,•)0,•)1>, |((•,•)1,•)1>
and |((•,•)1,•)0>.  It is then customary to take
|0> = |((•,•)0,•)1> and |1> = |((•,•)1,•)1> and
the remaining is considered a noncomputational
state.  We can then measure the qubits by
measuring the q-spin of the first two anyons.
This could be done by doing local
measurements when they are close together or
using interference4.  The R matrices for the two
braids that can be formed using three qubits are
shown in Figure 2 with an image the operation.
We can for any possible braiding of these three
qubits using these two matrices.  The fact that
the matrices are block diagonal means that only
the phase of the noncomputational qubit is
changed so we will not have leakage error into
that state.  Bonesteel et. al. (2005) searched
through the braids with up to 46 exchanges to
find approximate quantum gates to within ε ~ 1
– 2 x 10-3.  Where the distance between to
matrices ||U-V|| = O is defined as the square
root of the largest eigenvaule of O†O.
Unfortunately to increase the accuracy the
number of braids too be analyzed grows
exponential.  However, there is a theorem by
Solovay and Kitaev5 that guaranties that a set of
gates can be generated by finite braids to within
a certain accuracy with the length of the braid
increasing ~ |log ε|c  where c ~4.

Bonesteel et. al (2005) also considered the
problem of creating a two qubit gate.  The
problem that immediately arises is the fact that
the Hilbert Space is now 13 dimensional.  The
R-matrices are still block diagonal with blocks



Figure 3.a) This braid is called an injection. It takes the two control quasiparticles and puts them inside
the target qubit without changing any of the q-spins.  b) This is then a controlled not operation once the
two control quasiparticles are in the target qubit. c) This a combination of a and b and then the inverse
of a to remove it safely from the target.  This is then a control not gate with ε ~ 1.2x10-3(from 4).

Figure 2.a) shows the basic braids with there
matrices.  b) This is an entangling of a single qubit.
These are only representations in reality the anyons
would have to remain far apart when not being
braided to prevent lifting the topological protection
(from 4).

of size 5 x 5 (total spin 0) and 8 x 8 (total spin
1).  The theorem of Solovay and Kitaev again
guaranties that in principle we can find gates to
arbitrary accuracy.  Bonesteel et. al. (2005) were
able to construct braids to approximate
controlled rotation gates, which only require
finding a finite number of 3 quasiparticle braids.
They do this by moving two control
quasiparticle in unison around only two of the
target quasiparticles (Figure 3).  If the q-spin of
the pair of quasiparticles is zero then this
braiding is the identity while if the total q-spin is
one it is not.   By moving the two control
quasiparticles in unison this method reduces the
problem to finding three quasiparticle braids,
which is what they had already done for single
qubit gates. Solovay and Kitaev also created a
method for reducing the error in a braid, known
as construction5.  Using this it is then possible
to feasibly create two qubit gates to arbitrary
accuracy.

Conclusion

There is a great deal of progress that has
been made in the theory of topological quantum
computing.  There is still a significant amount of
work to be done on the experimental side to
find systems that contain anyons of the desired
type and in learning how to manipulate them.
Research also continues in the use of alternate
techniques an interesting one being braid in
superfluids (px+ipy) combined with flying
qubits.
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